
GrADyS-SIM - A OMNET++/INET simulation framework for
Internet of Flying things

Thiago Lamenza1, Marcelo Paulon1, Breno Perricone1, Bruno Olivieri1, Markus Endler1

1Laboratory for Advanced Collaboration, Departmento de Informática
Pontificial Catholic University of Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil

Abstract. This paper describes GrADyS-SIM, a framework for simulating co-
operating swarms of UAVs in a joint mission in a hypothetical landscape and
communicating through RF radios. The framework was created to aid and ver-
ify the communication, coordination, and context-awareness protocols being de-
veloped in the GrADyS project. GrADyS-SIM uses the OMNeT++ simulation
library and its INET model suite and allows for the addition of modified/cus-
tomized versions of some simulated components, network configurations, and
vehicle coordination to develop new coordination protocols and tested through
the framework. The framework simulates UAV movement dictated by a file con-
taining some MAVLink instructions and affected on the fly by different network
situations. The UAV swarm’s coordination protocol emerges from individual in-
teractions between UAVs and aims to optimize the collection of sensor data over
an area. It also allows simulation of some types of failures to test the proto-
col’s adaptability. Every node in the simulation is highly configurable, making
testing different network topographies, coordination protocols, node hardware
configurations, and more a quick task.

1. Introduction
When developing new network solutions, simulation is a powerful tool for testing, ana-
lyzing performance, and evaluating scalability. This fact becomes more apparent when
these networks have mobile air vehicles as some nodes. Simulation allows for multiple
hypothesis checks through the easy setup of different network configurations and topolo-
gies and faster play of specific use case scenarios, enabling much faster debugging and
adjustments than deployment and testing in the field. However, any simulation operates
according to models (wireless transmission, mobility model, terrain model, etc.) and is
not completely precise or accurate. Therefore, we believe in the combined and interleaved
use of simulation and field tests and are particularly interested in identifying in which as-
pects simulations and field tests - of the same scenario - differ and to what degree.

This work, more specifically the development of GrADyS-SIM, is one of the
tangible results of the research project entitled GrADyS [Olivieri De Souza et al. 2020]
(Ground-and-Air Dynamic sensors networkS). An important application of network tech-
nology is the creation of vehicle ad hoc networks, populated by mobile nodes that com-
municate with static nodes and other mobile nodes to implement some behavior. The
GrADyS1 project was created to investigate the applications of these UAV swarm net-
works in the monitoring of remote, dangerous, or hard-to-reach regions through the col-
lection of sensor data using UAV swarms. UAV or Aerial swarms are a specific type

1http://www.lac.inf.puc-rio.br/index.php/gradys/



of multi-agent robotic system with three-dimension freedom of movement and commu-
nication through wireless communication. In UAV swarms, one of the biggest chal-
lenges is to ensure correct action/movement coordination of the UAVs since this is usu-
ally done on the fly (literally) and must rely on intermittent and unreliable wireless
connections[Abdelkader et al. 2021].

This paper describes the simulation framework created to aid and validate the
project’s development. Through the OMNeT++ simulation library and the INET model
suite and with the creation and modification of simulated components, network configu-
rations and vehicle coordination protocols are created and tested in this simulation frame-
work.

The framework simulates UAV movement dictated by a simplified file containing
some MAVLink instructions and is affected on the fly by different network situations. The
UAV swarm’s coordination protocol emerges from individual interactions between UAVs
and has the objective of optimizing the collection of sensor data over an area. It also
allows simulation of some types of failures to test the protocol’s adaptability. Every node
in the simulation is highly configurable, making testing different network topographies,
coordination protocols, node hardware configurations, and more a quick task. OMNeT++
uses a configuration file system that lets the developer easily create and keep track of these
situations. A typical use case would be benchmarking the data collection performance of
different coordination protocols with a different amount of UAVs on a waypoint mission.

The project and documentation are available on Github2, and a video showcase of
the project can be found on Youtube3.

2. OMNET++/INET
OMNeT++ is a discrete event simulator implemented as a component-based C++ library.
It primarily allows developers to build complex network simulations by creating and ex-
tending components that communicate with each other to implement behavior. It is highly
extensible and modular, and the INET model suite provides a large component library to
aid developers in implementing network simulations. These highly parameterized and ex-
tensible components provide solutions for simulating environments, a complete network
stack, mobility, and many other things.

This environment provides the necessary tools for developing flexible simulations
capable of representing different network situations with enough fidelity to serve as a tool
for testing and validating coordination and network protocols and the network topogra-
phies needed to implement real-life mobile networks. Data collection and observation test
many variations in the network’s implementation rapidly. The simulation can be easily
configured to represent these variations by customizing component parameters and by the
extension or creation of new components when needed.

3. Architecture
The framework’s architecture is mainly composed of three models: one responsible for
communication between UAVs (communication), one for controlling the node’s move-

2https://github.com/brunoolivieri/gradys-simulations
3https://youtu.be/Im6d5TEes4Y



Figure 1. Project’s Architecture Diagram

ment (mobility), and the last to manage the interaction between the last two (pro-
tocol). The behavior and implementation of these modules is detailed further be-
low. They were made in such a way that the messages exchanged between them are
sufficiently generic to allow the creation of a new protocol by creating a new pro-
tocol module, with no changes to the other ones by leveraging these generic mes-
sages to carry out different procedures. The messages exchanged between them
are described on .msg files like MobilityCommand.msg, Telemetry.msg and
CommunicationCommand.msg and define the format of the data being exchanged
between them.

These three modules are loaded in a compound module defined by a .ned file. In
OMNeT++ .ned files define modules that can use other modules forming a module tree.
These modules can be simple (the leaves of the module tree) or a compound module that
connects simple modules or other compound modules with gates. A network is a special
kind of compound module that can be run as a simulation.

The compound module that represents UAVs in the simulation is the
MobileNode.ned and MobileSensorNode.ned represents our sensors. These
modules contain Communication and Mobility modules (defined in AdhocHost, this mod-
ule’s parent) and the Protocol module (defined in the file). The mobilityDrones.ned
file connects all the UAVs (called quads), sensors and some other modules necessary to
the simulation.

3.1. Components

3.1.1. Mobility

The mobility module is responsible for controlling UAV movement and responding to
requests from the protocol module to change that movement through MobilityCommand
messages. It also needs to inform the protocol module about the current state of the
UAV’s movement through Telemetry messages. As part of the module initialization, the



waypoint list is attached to a Telemetry message, so the protocol module has access to the
tour the mobile node is following.

Currently, the only mobility module being used is the DroneMobility.ned
module. The module responds to several commands defined by the MobilityCommands
message type that is used by the protocol module to control it. Its default behavior is
to follow a list of waypoints defined in a waypoint file, but through commands, it can
perform several tasks like reversing course, going to a specific point, or sitting idle. This
module was adapted from the VehicleMobility module provided by INET to simulate
ground vehicle movement through a series of waypoints. It was adapted to work in three
dimensions, allowing flight, and following a waypoint file akin to the MAVLink waypoint
file format.

An optional feature of the mobility module is attaching a failure generator mod-
ule. They connect to the mobility module using the same gates the protocol module does
and use that to send commands in order to simulate failures. This can be used to trigger
random shutdowns and even to simulate energy consumption. An example of a mod-
ule that simulates energy consumption is the SimpleEnergyConsumption, a parametrized
component to simulate consumption and battery capacity. It sends RETURN TO HOME
messages to the vehicle when the UAV’s battery reaches a certain threshold and shuts it
down when the battery is depleted.

3.1.2. Communication

INET provides built in support for the simulation of real communications protocols and
the communication module takes advantage of this to simulate communication between
nodes. It also has to inform the protocol module of the messages being received by sharing
the messages themselves and listen to orders from the protocol module through Commu-
nicationCommands.

Several implementations of the communication module are used. These imple-
mentations contain functions that interface with INET’s communication capabilities but
don’t implement interaction with any other module. The interactions themselves are de-
fined and controlled by the protocol module.

3.1.3. Protocol

The protocol module manages the interaction between the movement and communication
of the mobile nodes. It makes use of the messages provided by its two sibling modules to
create node interaction strategies. It primarily reacts to messages it receives from those
modules and determines which orders to give them to achieve the desired result.

It gathers information about the current state of the simulation by analyzing
Telemetry messages received from the Mobility module and Packets forwarded to it by
the Communication module. An important task it performs is the definition of the mes-
sage sent by the Communication module. These messages will be sent to other nodes
that will themselves handle them. The messages are inserted into IP Packets as payloads.
They can have different formats depending on the protocol being implemented.



An example of a UAV coordination protocol that was implemented in this
framework was DADCA [Olivieri de Souza and Endler 2020]. The DADCA investigates
whether it is possible to implement a distributed algorithm to coordinate several fully
autonomous (i.e., non-human-controlled) UAVs collecting data from a WSN without cen-
tralized control or knowledge of internal UAV states and relying on only ad-hoc commu-
nication.

Another example of a protocol implemented was MAM[Paulon J. V.. et al. 2021].
MAM proposes two alternatives to BTMesh’s default relay algorithm (MAM0 and
MAM∆) that may achieve higher packet delivery rates and lower energy draw when rout-
ing data towards a Mobile-Hub.

Protocols implement the IProtocol interface and extend
CommunicationProtocolBase.ned, which provides useful stub functions
to use when implementing protocols.

Some of the currently implemented protocols are as follows:

• ZigZagProtocol.ned and ZigZagProtocolSensor.ned
These files implement the mobile node and the sensor side of the ZigZag proto-
col. This protocol manages a group of UAVs following a set path passing above
several sensors from where they pick up imaginary data from those sensors. The
UAVs also interact with each other sending several messages to coordinate their
movement.
Heartbeat messages are sent to a multicast address. If these are picked up by sen-
sors, they respond with data. If other UAVs pick them up, they initiate a commu-
nication pair by sending a Pair Request message which is confirmed by the other
UAV with a Pair Confirmation message. The UAV furthest away from the starting
point of the path sends its data to the other UAV in the pair, and they both reverse
their movement. The objective is that, over time, the UAVs will each occupy an
equally sized section of the course, picking up data on the way and sharing it at
their section’s extremities.

• DadcaProtocol.ned and DadcaProtocolSensor.ned
This protocol is similar to the ZigZagProtocol. It also manages data collection by
mobile nodes in a set path. The difference is that this method aims to speed up
the process of equally spacing the UAVs in the course by implementing a more
advanced movement protocol.
When the Pair Confirmation message is received by both UAVs, confirming the
pair, both UAVs take note of the number of neighbors on their left (closer to the
start) and their right (further from the start) and share this information with their
pair. Both update their neighbor count and use it to calculate a point in the course
that would represent the extremity of both their sections if their current count of
neighbors is accurate. Then they both travel together to this point and revert. This
behavior is implemented with a sequence of commands that get queued on the
mobility module.

3.2. Operation

The nature of the operation of a OMNeT++ simulation is dictated by the messages ex-
changed between modules and how they react to them. In the case of the GrADyS project,



the focus of our simulations is the use of quadcopters to collect data from static sensors
spread in a field. The UAVs and sensors are the network nodes of the simulation and are
the main focus of development efforts. Each of these nodes is composed of three main
modules, illustrated in the previous sections, that interact with each other to form the
node’s behavior.

Since all our nodes are composed of the same types of modules, development is
fast and simple, and the implemented coordination protocols focus on creating complex
behavior emerging from individual actions taken by the nodes. In the protocols that we
have developed, every node of the same type is functionally identical, and there is no co-
ordinator, but they still need to be coordinated to ensure efficient data collection. In the
Dadca protocol, this is achieved by the collection of information by each of the UAVs to
gather a basic understanding of the layout and the distribution of other UAVs in the forma-
tion, namely by the counting and sharing of other neighbor UAVs they have encountered.
The Zigzag protocol, more primitively, has the UAVs reverse at every encounter with each
other, with the vehicle farthest away from the ground station passing on the data to the
one closest, ensuring it will eventually reach it.

The way that these nodes act is mainly determined by the implementation of their
protocol module. It uses the other two modules as both sensors and actuators, gathering
information about the network’s state through information about the node’s movement and
messages received from other nodes and using this information to command the other two
modules to perform the desired behavior. An example of this is how in the previously de-
scribed Zigzag coordination protocol, the protocol module, on receiving communication
from another UAV, compares the location visible in their message with its own location
by analyzing telemetry received from the mobility module and uses all this information
to decide if it should collect or send data to the other vehicle and commands the mobility
module to invert the UAV’s movement.

4. Usage
OMNeT++ simulations are initialized by .ini files. These files are used to set the many
parameters of the simulation. These parameters control everything from the flight speed
of the UAVs to the implementation of the protocol module to be used for the sensor nodes.
They are neatly organized in these files and can be grouped in launch configurations. The
launch configurations set a group of parameters for the simulation and can be used to
easily switch between different sets of simulation types and node behaviors.

The mobilityDrones-omnetpp.ini file contains some launch configurations for Wifi
only communication and shared Wifi and MAM communication, each with configurations
for one to four UAVs. Launch configurations are defined in the same .ini file denoted by
the [Config Sim2drone] tag, where Sim2drone is the name of the launch configuration.
The [Config Wifi] and [Config MAM] configs are base configs for the other ones and
should not be run directly.

These configurations have allowed us to benchmark different coordination proto-
cols on their efficiency in transporting data from sensors to a ground station. Translating
the technical behavior of the protocol into actual simulated behavior is simplified by the
framework’s structure. Since the mobility and communication modules are blind to the
protocol’s behavior, the only module that needs to be changed is the Protocol module.



Coordination requires information, and since this framework specializes in deal-
ing with decentralized coordination protocols, information resides in the mobile nodes
that populate the network. The first step in implementing a protocol is defining what in-
formation the UAV should use to make its decisions. That information needs to be packed
into a message definition so that it can be shared between nodes during the simulation.
After the information, the next step is to define how that information will affect a UAV’s
movement and behavior.

Our simplest protocol, the ZigZag protocol, only uses the vehicle’s current po-
sition in the mission and which way it is traveling as information. Based on that, it is
defined that when two UAVs meet, they will only interact if they are traveling in opposite
directions on the mission path. If they are, the UAV traveling towards the mission start,
where the ground station resides, will set its payload to zero, and the one traveling away
from it will add to its payload whatever the other one was carrying. After that, they will
both reverse their courses and initiate a timeout, during which they will not interact with
any other UAVs. This interaction happens in three steps. The message definition for this
protocol, besides carrying the mentioned information, carries a state flag that allows the
UAVs to know which step they are one. The first step is a continuous heartbeat sent by
the UAVs that, when heard, will be answered with a pair request message which in turn
will be answered with a pair confirmation message, confirming that both UAVs are aware
and have completed the exchange.

This is only one example of a coordination protocol. As mentioned, this frame-
work has allowed us to benchmark these protocols. By setting them up under the same
conditions and observing how much data is transferred to the ground station in a set
amount of time. It is easy to see that a more sophisticated protocol like Dadca strongly
improves the time the UAVs take to reach a stable state and how that improves the amount
of data being passed to the ground station. OMNeT++’s parametric nature also helps set
up these conditions quickly, being able to easily tune things like the number of UAVs
present in the simulation.

Another use of the framework is to set up and test different communication pro-
tocols and simulated hardware. OMNeT++’s statistical features help to create easy-to-
understand graphs that show how different network stacks affect things like communica-
tion range which in turn affect the number of messages being exchanged and the UAV’s
sensor data collection rates.

4.1. Installation
In order to run the simulations and use the components in this repository, you need to
have both OMNeT++ and the INET framework installed.

Version 5.6 of OMNeT++ is required. To install it, just follow these instructions.
INET version 4.2 is also required. When first opening the OMNeT++ IDE, you should be
prompted with the option to install INET, and all you need to do is accept it, but if you
need help, check out the installation instructions.

After installing both OMNeT++ and INET, you should be able to clone the repos-
itory to your active OMNeT++ IDE workspace. To do this, select “File → Import...” then
open the “git” section and select “Projects from git” then “Clone Uri”. After that, just fill
in the URL for this repository and finish the process following the displayed instructions.



5. Conclusion
This work is a step within a set of deliverables for a project. The GrADyS project uses
this tool to verify protocols and compare field test results with accurate sensors and UAVs.

This tool is in evolution, is licensed as open-source, and can be accessed freely4.
From this, we hope that other research groups can reuse it with or without our involvement
and contribute to that.

Acknowledgments
This study was financed in part by AFOSR grant FA9550-20-1-0285.

References
Abdelkader, M., Güler, S., and Jaleel, H. e. a. (2021). Aerial swarms: Recent applications

and challenges. Curr Robot Rep, (2):309–320.

Olivieri de Souza, B. J. and Endler, M. (2020). Evaluating flight coordination approaches
of UAV squads for WSN data collection enhancing the internet range on WSN data
collection. Journal of Internet Services and Applications, 11(1):4.

Olivieri De Souza, B. J., Paulon, M., Vasconcelos, J., and Endler, M. (2020). GrADyS:
Exploring movement awareness for efficient routing in Ground-and-Air Dynamic Sen-
sor Networks. Available at http://arxiv.org/abs/2012.10690.

Paulon J. V.., M., Olivieri de Souza., B., and Endler., M. (2021). Opportunistic Routing
towards Mobile Sink Nodes in Bluetooth Mesh Networks. In Proceedings of the 18th
International Conference on Wireless Networks and Mobile Systems - WINSYS,, pages
67–75. INSTICC, SciTePress.

4https://github.com/brunoolivieri/gradys-simulations


