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Abstract—The exponential growth of the Internet of Things
(IoT) has introduced unprecedented challenges in data pro-
cessing, privacy preservation, and energy efficiency. Traditional
centralized approaches are often unsuitable for IoT environments
due to bandwidth limitations, data heterogeneity, and privacy
concerns. This study proposes a novel framework combining
federated learning (FL) and autoencoders to address these issues
in IoT-based image classification tasks. By leveraging Unmanned
Aerial Vehicles (UAVs) as intermediaries for model aggrega-
tion and distribution, the framework minimizes communication
overhead while maintaining data privacy. Autoencoders are
employed for unsupervised feature extraction, enabling effective
data representation even in the absence of labeled data. Results
demonstrate that, while autoencoders achieve lower classifica-
tion accuracy compared to supervised approaches, they provide
significant advantages in bandwidth efficiency, scalability, and
privacy preservation. The integration of UAVs further enhances
the system by optimizing communication and enabling model
improvement in real-time. This framework offers a flexible
and resource-efficient solution for IoT applications, particularly
in scenarios where data labeling is impractical or privacy is
paramount.

Index Terms—Federated Learning, Autoencoders, IoT, UAVs,
Image Classification, Data Privacy.

I. INTRODUCTION

The proliferation of the Internet of Things (IoT) has gen-
erated unprecedented volumes of data from diverse connected
devices [1]. Traditional centralized processing approaches face
significant challenges in IoT environments, particularly regard-
ing privacy, communication overhead, and latency, especially
when data labeling is expensive or unavailable [2].

Privacy concerns arise when transmitting sensitive data
from distributed devices to central servers, increasing risks
of breaches and unauthorized access [3]. Additionally, IoT
systems in resource-constrained environments have limited
bandwidth and energy [4]. Continuous data transmission can
overwhelm network resources and rapidly drain device batter-
ies. IoT devices often use low-power, long-range radio tech-
nologies (NB-IoT, LoRa, Sigfox), which introduce challenges
in transmission rates and latency. Furthermore, centralized
processing introduces significant delays in time-sensitive ap-
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plications like autonomous vehicles or emergency response
systems [5].

Federated learning addresses these challenges by processing
data locally and transmitting only model updates [6]. However,
IoT deployment faces obstacles including device heterogeneity
with varying computational capacities [7] and non-IID data
distributions across devices [8], which can compromise global
model performance, especially with sparse labeled data.

Autoencoders [9] offer a promising solution through their
ability to extract compact, meaningful data representations.
Using an encoder-decoder architecture, they capture critical
features while filtering noise, making them valuable for hetero-
geneous, unstructured IoT data [10]. These compact represen-
tations preserve data structure while reducing dimensionality,
enabling feature extraction without extensive labeling and
providing denoising capabilities for noisy sensor data.

This paper investigates integrating autoencoders into fed-
erated learning as an alternative to supervised models. We
propose a framework where IoT devices use autoencoders for
image classification, with Unmanned Aerial Vehicles (UAVs)
facilitating communication and model aggregation between
distributed sensors [11]. Each sensor trains an autoencoder
locally, and UAVs aggregate these into a global model redis-
tributed to ensure consistent improvement.

We evaluate this approach against a supervised baseline
model. While supervised learning achieves higher accuracy
with labeled data, our autoencoder-based approach offers flex-
ibility when labeled data is scarce. This paper addresses a key
question: Can autoencoder-based federated learning, despite
lower classification accuracy, provide meaningful results in
IoT environments with limited labeled data?

II. RELATED WORK
A. Federated Learning in loT

Federated learning addresses privacy and efficiency chal-
lenges in IoT networks. Beitollahi and Liberti et al. [12] [13]
explored preserving data privacy through localized processing
with centralized aggregation, while Hsu [14] demonstrated
its effectiveness with non-IID data distributions. Our work



integrates autoencoders to enhance feature extraction for
limited-label scenarios. Unlike prior studies, we address IoT-
specific challenges through UAV-mediated communication and
model aggregation. We employ quantization and compression
to reduce overhead, making our approach more suitable for
resource-constrained real-world IoT deployments.

B. Autoencoders for Image Classification

Autoencoders have proven to be an effective tool for feature
extraction and dimensionality reduction in the context of image
classification. Fagbohungbe et al. [15] proposed advancements
in autoencoder architectures that improve both robustness and
efficiency, making them suitable for deployment in resource-
constrained environments such as IoT networks. Tschannen
et al. [16] surveyed these models’ ability to learn compact
and meaningful representations of complex data, which are
essential for unsupervised learning tasks. In this research,
autoencoders are leveraged to optimize federated learning
by reducing the communication overhead and enhancing the
quality of the shared models.

C. Hybrid Models for Federated Learning

Recent research has explored hybrid models that combine
the strengths of autoencoders and supervised learning. Zheng
et al. [17] introduced a semi-federated learning framework
that integrates unsupervised pre-training with supervised fine-
tuning, demonstrating improved performance in scenarios with
limited labeled data. Such hybrid approaches aim to leverage
the feature extraction capabilities of autoencoders while bene-
fiting from the discriminative power of supervised learning,
making them potentially well-suited for IoT environments
where labeled data is scarce.

D. UAVs in Data Collection

Unmanned Aerial Vehicles (UAVs) have become a critical
component in IoT networks due to their ability to efficiently
collect and transmit data over large areas. Recent studies
[18] [19] have demonstrated how UAVs serve as vital in-
termediaries between distributed sensors and central servers,
significantly enhancing the efficiency of data aggregation. In
federated learning contexts, UAVs not only collect data but
also facilitate the distribution of a global model back to the
sensors, ensuring the models are continuously improved [20].

E. Path Optimization with Energy Constraints

Path optimization for UAVs, especially under energy con-
straints, is vital for the sustainability of IoT operations. Jim
et al [21] discusses strategies to effective UAV path planning,
accounting for both energy consumption and the efficiency
of data collection. Their research highlights the importance of
adaptive algorithms that adjust UAV flight paths based on real-
time conditions, such as remaining battery life and the priority
of data collection tasks. This approach not only extends the
operational life of UAVs but also ensures that critical data is
collected and transmitted in a timely manner, which is crucial
for the reliability of UAV-assisted federated learning systems.

F. Challenges in IoT Hardware for Model Training

IoT devices typically face limitations in computational
power and energy resources, which pose significant challenges
for on-device model training. Zawish et al. [22] explored the
use of network pruning and advanced model compression
techniques to mitigate these limitations. Lan et al. [23] in-
vestigated the effectiveness of model quantization in reducing
the computational load without significantly compromising
accuracy. In this study, similar techniques are employed to
ensure that federated learning models can be trained and
deployed effectively within the constraints of IoT devices.

G. Security and Privacy in Federated Learning

Federated learning and IoT introduces unique security and
privacy challenges, particularly in decentralized IoT envi-
ronments where local models could be forged/intercepted
and modified to disrupt the formation of the global model.
Tong et al. [24] proposed integrating blockchain technol-
ogy into federated learning systems to enhance the security
and trustworthiness of model aggregation. Mosaiyebzadeh et
al. [25] discussed the implementation of Privacy-enhancing
technologies (PETs) that protect data integrity and prevent
unauthorized access during the federated learning process.

III. METHODOLOGY

This section outlines the methodology applied in this re-
search, detailing the system design, simulation setup, federated
learning workflow, optimization techniques, and evaluation
metrics.

A. System Design

The proposed system integrates federated learning within a
UAV-assisted IoT environment. IoT sensors train local models
on their data subsets, while UAVs aggregate these into a global
model and redistribute it back to sensors. This design suits
scenarios with scarce or unevenly distributed labeled data.

Key challenges include device heterogeneity, where sensors
have varying computational capabilities and power constraints,
complicating uniform performance across the network. Non-
IID data distribution poses difficulties for global model gen-
eralization, as sensors collect data differing by environmental
factors and locations. Communication reliability concerns arise
from UAVs needing proximity to sensors, where unstable
connections can cause transmission failures. The iterative
aggregation process introduces latency, especially with limited
bandwidth, requiring optimization between update frequency
and real-time performance.

B. CIFAR-10 Dataset

CIFAR-10 contains 60,000 32x32 RGB images across 10
classes. We used the standard 50,000/10,000 training-test split,
dividing training data equally among four sensors (12,500
images each). This benchmark dataset offers appropriate com-
plexity for resource-constrained IoT devices while enabling
evaluation of federated learning performance in distributed
environments.



C. Simulation Setup

Our setup models environmental monitoring in remote ar-
eas, where sensors deployed across forests collect data on
temperature, humidity, and acoustic signals indicating illegal
activities. Due to data sensitivity and remote locations, local
processing is preferred over central transmission.

A UAV periodically collects locally trained models, ag-
gregates them into a global model, and redistributes this to
sensors. The simulation used GrADyS-SIM NG [18], designed
for IoT environments with UAV support. The 200200 unit
grid contained four sensors at coordinates (150,0), (0,150), (-
150,0), and (0,-150), each training local models on its data
subset.

A single UAV follows a predefined path with 30-unit
communication range, interacting only with sensors in range. It
aggregates models only when receiving updates from sensors
that completed training cycles, then immediately redistributes
the updated model to in-range sensors.

We deliberately set the 30m UAV-sensor distance to emulate
constraints where signal attenuation and energy limitations are
critical. This shorter range emphasizes connectivity challenges
and route-planning complexities, providing a rigorous test
scenario.

This process mirrors federated learning where distributed
nodes collaborate without sharing raw data. The simula-
tion runs for a fixed duration, allowing multiple aggregation
rounds.

D. Federated Learning Workflow

The federated learning process follows these steps:

1) Local Training: Sensors train initial local models on
their data subsets, optimizing reconstruction loss and
classification accuracy.

2) Model Update Request: After predefined epochs, sen-
sors await UAV communication signals.

3) Model Transmission: When receiving UAV signals,
sensors compress and quantize model parameters before
transmission.

4) Model Aggregation: The UAV collects and aggregates
models into an updated global model.

5) Global Model Distribution: The updated model is sent
back to sensors for next training rounds.

6) Iterative Improvement: This process repeats, progres-
sively enhancing global model performance.

E. Optimization Techniques

Several techniques enhanced communication efficiency and
model performance:

¢ Quantization: Model parameters were quantized before
transmission using Quantization-Aware Training, reduc-
ing memory usage and communication overhead while
maintaining performance.

« Compression: Model state dictionaries were compressed
with gzip to further reduce transmission load.

« Adaptive Learning Rate: An adaptive scheduler opti-
mized training, accelerating convergence while adapting
to varying data distributions across sensors.

FE. Evaluation Metrics

Model performance was assessed using reconstruction qual-
ity and classification accuracy metrics. Mean Squared Error
measured autoencoder reconstruction accuracy, with lower
values indicating better performance. Classification accuracy
reflected correct categorization rates, with higher values show-
ing more effective classification.

« Mean Reconstruction Loss: MSE measured how well
autoencoders reconstructed original input from latent
space.

« Classification Loss: Evaluated classification head perfor-
mance during image classification.

o Accuracy: Overall correct classification percentage, a
primary performance indicator.

¢ Clustering Accuracy: Assessed encoder feature extrac-
tion using K-means clustering.

¢ Adjusted Rand Index (ARI): Evaluated similarity be-
tween predicted clusters and true labels.

o Confusion Matrix: Visualized classification perfor-
mance, showing correct/incorrect predictions by class.

o t-SNE Visualization: Projected high-dimensional data
to visualize feature space separation, showing cluster
distinction from both autoencoder and supervised models.

The confusion matrix illustrates classification errors be-
tween categories, while t-SNE plots represent feature space
separability, indicating whether learned features form distinct
clusters.

IV. SYSTEM ARCHITECTURE AND SIMULATION DESIGN

This section outlines the organization of the federated
learning system, focusing on the Autoencoder model, Sensor
Protocol, UAV Protocol, and the handling of communication
and optimization techniques in an IoT environment.

A. Autoencoder Model and Network Layers

The autoencoder model, implemented using PyTorch, is
central to the feature extraction process in the federated
learning system, with the added goal of image classification.
The network consists of three main components: the encoder,
the decoder, and the classification head, each playing a crucial
role in processing, reconstructing, and classifying image data.

1) Encoder, Decoder, and Classification Head: The en-
coder compresses the input image data into a lower-
dimensional, feature-rich representation. This compression is
vital for reducing the data transmission load between sensors
and UAVs. The encoder, as illustrated in Figure 1, consists
of two convolutional layers, each followed by batch nor-
malization and ReLU activation functions. The first convolu-
tional layer reduces the input image size from 32 x 32 x 3
to 16 x 16 x 32, and the second layer further compresses
it to 8 x 8 x 64. These layers are responsible for extracting
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Fig. 1: Encoder Network Layers
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Fig. 2: Decoder Network Layers

hierarchical features from the image while retaining essential
information.

Once the data has been compressed into a latent represen-
tation, or bottleneck, of size 8 x 8 x 64, it is passed to two
separate branches: the decoder and the classification head.

The decoder, shown in Figure 2, reconstructs the original
image from the compressed format. It utilizes two transposed
convolutional layers, each followed by batch normalization
and ReLU activation, to expand the data back to its original
size. The final layer of the decoder applies a sigmoid activation
function to produce the reconstructed output image of size
32 x 32 x 3. The quality of the reconstruction is measured
using the Mean Squared Error (MSE), which guides the
training process to ensure accurate image reconstruction.

In parallel, the classification head, depicted in Figure 3,
flattens the latent representation and passes it through two
fully connected layers. The first fully connected layer reduces
the feature dimension to 128, followed by a ReLU activation.
The final fully connected layer outputs the class probabilities
across the predefined number of classes (e.g., 10 for CIFAR-
10), enabling the model to classify the input images.

B. Sensor Protocol

The sensor protocol governs the behavior of individual IoT
sensors within the network, enabling each sensor to operate
independently while contributing to the collective learning
process. Each sensor trains a local version of the autoencoder
on its local subset of data, allowing it to adapt the model to
local data distributions, which can vary significantly across
different sensors. The key tasks managed by this protocol
include:

| Latent Representation 8 X 8 x 64 |

| FC (128) + ReLU |

FC (N Classes)

Fig. 3: Classification Head Network Layers

o Local Model Training: Each sensor performs contin-
uous training on its local dataset, periodically updating
the model weights. This allows the sensor to refine
its understanding of the local data, which is crucial in
environments where data distribution is non-IID (non-
Identically Independently Distributed) across the network.
The model training process is optimized to run efficiently
on the limited computational resources available on IoT
devices.

¢« Model Communication: Upon receiving a request from
the UAYV, each sensor transmits its trained model weights.
This step is vital for the federated learning process, as
the aggregation of these local models forms the basis of
the global model. The sensor protocol ensures that com-
munication is efficient, transmitting only the necessary
model updates to maintain data privacy and reduce the
communication overhead. The protocol also manages the
compression and quantization of model data before trans-
mission to further optimize the communication process.

C. UAV Protocol

The UAV protocol orchestrates the aggregation and dis-
tribution of models across the network, serving as a central
coordinator in the federated learning process. The UAV plays
a pivotal role in ensuring that the collective knowledge of
all sensors is integrated into a coherent global model. Key
functions of the UAV protocol include:

o« Model Aggregation: The UAV collects the model
weights from multiple sensors, aggregates them into a
single global model, and redistributes the updated model
back to the sensors. This aggregation process involves
averaging the model parameters received from each sen-
sor, ensuring that the global model reflects the learning
from the entire network, thereby enhancing overall model
performance.

« Communication Management: The UAV manages com-
munication with the sensors , ensuring timely data ex-
change with sensors within the transmission range. The
UAV’s mobility allows it to optimize its flight path
dynamically, which is not attempted nor covered in this
work

o Global Model Evaluation: At the end of the simulation,
the UAV evaluates the performance of the global model
using a separate test dataset. This evaluation is critical for
identifying any performance issues and guiding further
model improvements.



D. Message Handling and Optimization

The communication between sensors and the UAV is fa-
cilitated through structured messages that ensure efficient data
exchange and minimize communication overhead. The primary
messages exchanged include:

« Model Update Request: Sent by the UAV to initiate the
transmission of local model weights from sensors.

o Model Update Response: Sent by sensors in response
to a request, containing the compressed and quantized
model weights.

« Global Model Update: Sent by the UAV after aggregat-
ing the local models, instructing sensors to update their
local models with the new global parameters.

Model weights undergo gzip compression and quantization
before transmission. This optimizes data transfer in bandwidth-
limited IoT networks by reducing size while maintaining
precision [26]. Table II shows autoencoder model size reduces
from 2.197 MB to 0.562 MB after quantization, while su-
pervised model size decreases from 2.415 MB to 0.619 MB.
This significant reduction ensures efficient communication
between sensors and UAVs while preserving model integrity
and minimizing resource usage, enabling scalable federated
learning deployment in IoT environments.

V. EXPERIMENTAL RESULTS, DISCUSSION, AND
CONCLUSION

A. Experimental Results

This section presents a detailed comparison of the
autoencoder-based federated learning approach and the base-
line supervised learning model. The experiment ran for 80
trials, each lasting 15,000 seconds, across both scenarios.
Key metrics such as Loss, Accuracy, Mean Squared Error
(MSE), Clustering Accuracy, Adjusted Rand Index (ARI), and
Confusion Matrix are used to evaluate the performance. After
each run, the model state was saved for subsequent runs to
restart training.

1) Experimental Setup and Configurations: The simula-
tions were run using the sensor protocol, described below, for
both the autoencoder and the supervised learning models:

TABLE I: Model Configurations for Autoencoder and Super-
vised Learning

Parameter Autoencoder Supervised
Model

Training Approach ~ Unsupervised Supervised

(Autoencoder)  (Direct

Classification)

Number of Train- 80 80

ing Cycles

Duration (seconds) 15,000 15,000

Learning Rate 0.001 0.001

Batch Size 32 32

The CIFAR-10 dataset was divided equally among the four
sensors, ensuring each sensor had access to a unique subset
of the data. The UAV followed a predefined square-shaped

path, visiting each sensor in a cyclical manner to collect model
updates.

The communication protocol between the UAV and sensors
incorporated optimizations to reduce transmission overhead.
These optimizations included:

+ Model Quantization: Local models were quantized be-

fore transmission to reduce their size.

« Compression: Model state dictionaries were compressed

using gzip to further minimize data transfer.

2) Scenario 1: Autoencoder-Based Federated Learning: In
this scenario, the autoencoder played a dual role of feature
extraction and classification. One of the primary metrics
observed was the mean reconstruction loss, where the model
achieved a value of 0.2618. This indicates the autoencoder’s
ability to effectively reconstruct input images from the learned
latent representations, showcasing its strength in capturing key
features of the data.

When evaluating the classification performance, the clas-
sification head of the autoencoder yielded a loss of 0.7266.
This value suggests that while the autoencoder is able to
extract meaningful features, there is still significant room
for improvement in its classification capabilities, particularly
when compared to more traditional supervised models.

The overall accuracy of the autoencoder reached 74.97%,
which, although lower than the accuracy achieved by the
supervised model, reflects its ability to handle unlabeled data.
This accuracy, while respectable, highlights the trade-offs
associated with unsupervised learning, where the focus is
more on feature extraction rather than optimizing classification
performance.

In terms of clustering, the autoencoder struggled. It achieved
a clustering accuracy of 19.75%, indicating that the features
extracted were not distinct enough to form well-separated
clusters. This difficulty in clustering suggests that while the
autoencoder is useful for feature extraction, the learned fea-
tures are not sufficiently differentiated to improve clustering
performance over a supervised approach.

The Adjusted Rand Index (ARI) for the autoencoder stood
at 0.0363, further reflecting the model’s moderate clustering
performance. This score indicates weak alignment between the
predicted clusters and the true labels, underscoring the chal-
lenges the model faced in effectively separating the classes.

The confusion matrix (Figure 4) revealed that while the
autoencoder was able to classify some classes with a degree of
accuracy, there were notable misclassifications. This suggests
that while the model can extract basic features, it struggles
to distinguish between certain classes, particularly those with
overlapping features, leading to higher misclassification rates.

Finally, the t-SNE visualization (Figure 5) shows that the
learned features from the autoencoder were not well-separated
into distinct clusters. This lack of clear separation contributes
to the model’s poorer performance in clustering accuracy and
highlights the challenges it faced in distinguishing between
different classes.

3) Scenario 2: Supervised Learning Model: In this sce-
nario, the supervised learning model was optimized specifi-
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cally for direct classification tasks. One of the key metrics
observed was the loss, where the supervised model achieved a
lower loss of 0.5285. This lower loss demonstrates better con-
vergence and training outcomes compared to the autoencoder,
indicating that the supervised approach is more efficient at
minimizing classification errors when labeled data is available.

The model’s accuracy reached 82.4%, which is higher than
the autoencoder’s accuracy. This superior performance shows
that the supervised model, benefiting from the availability of
labeled data, was able to create clearer decision boundaries
between classes, leading to more precise classification results.

The clustering accuracy of the supervised model was
27.42%, reflecting its ability to form more distinct and mean-

Confusion Matrix
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P:edictesd
Fig. 6: Confusion Matrix for Supervised Learning Model

ingful clusters than the autoencoder. The higher clustering ac-
curacy suggests that the supervised model learned features that
were better differentiated, enabling more accurate grouping of
data points based on their class labels.

When examining the Adjusted Rand Index (ARI), the su-
pervised model recorded a score of 0.1010. This score, though
still relatively low, indicates better alignment between the
predicted clusters and the true class labels compared to the
autoencoder. The supervised model’s ARI score highlights its
improved capacity for distinguishing between different classes.

The confusion matrix (Figure 6) shows that the supervised
model produced fewer misclassifications compared to the
autoencoder. This reduction in errors further demonstrates the
strength of the supervised model in accurately distinguishing
between classes, benefiting from the direct supervision of
labeled data during training.

Lastly, the t-SNE visualization (Figure 7) reveals better-
separated clusters in the supervised model. This clear separa-
tion of data points into distinct clusters aligns with the higher
clustering accuracy and ARI. The visualization underscores
the supervised model’s ability to learn discriminative features
that better differentiate between the various classes, making
it more suitable for tasks where classification accuracy is a
priority.

B. Model Size Reduction through Quantization

Quantization effectively reduces model sizes, which is es-
sential for deployment in resource-constrained environments.
Table II shows the sizes of both models before and after
quantization. Notably, the autoencoder model has a smaller
size compared to the supervised model.

TABLE II: Model sizes before and after quantization

Model Type Non-Quantized  Quantized Size
Size (MB) (MB)

Autoencoder 2.197 0.562

Supervised 2415 0.619

For the autoencoder, quantization reduced the model size
from 2.197 MB to 0.562 MB, achieving a reduction of
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approximately 74.4%. The supervised model saw a similar
reduction from 2.415 MB to 0.619 MB. The smaller model
size of the autoencoder highlights its efficiency, making it
more suitable for devices with limited storage capacity.

Reducing model sizes not only saves storage space but
also decreases communication overhead in federated learning
systems. The significant size reductions demonstrate the ef-
fectiveness of quantization in optimizing models for practical,
real-world applications.

C. Comparison with Standard Benchmarks

The performance of our autoencoder-based federated learn-
ing approach on the CIFAR-10 dataset (74.97% accuracy) dif-
fers from results reported in standard centralized benchmarks
such as those by Thakkar et al. [27] and Recht et al. [28]. This
discrepancy can be attributed to several key factors inherent
to our federated learning framework and its specific design
choices.

First, our implementation prioritizes data privacy and com-
munication efficiency over maximum classification accuracy.
While traditional centralized models can access the entire
dataset at once with consistent hardware resources, our model
operates under the constraints of distributed training across
resource-limited IoT devices, with only periodic model ag-
gregation via UAV. This fundamental architectural difference
introduces several challenges not present in benchmark stud-
ies:

« Non-IID Data Distribution: Each sensor in our setup
trains on a distinct local subset of data, leading to
potential distribution shifts and model biases that can
impact overall performance. The periodic nature of model
aggregation may not fully mitigate these biases compared
to centralized training approaches.

« Communication Constraints: To optimize bandwidth
usage between sensors and UAVs, our models undergo
quantization and compression before transmission. While
these techniques significantly reduce model size (by ap-

proximately 74%), they introduce slight information loss
that can affect model performance.

« Architectural Trade-offs: Our autoencoder architecture
is deliberately designed to balance feature extraction
capability against computational efficiency and model
size. More complex architectures might achieve higher
accuracy but would be impractical for deployment in
resource-constrained IoT environments.

« Dual Optimization Objectives: Unlike standard classi-
fication models that optimize solely for prediction accu-
racy, our autoencoder simultaneously optimizes for both
reconstruction quality and classification performance.
This dual objective inevitably results in performance
trade-offs compared to models focused exclusively on
classification.

These differences highlight that direct comparisons with
benchmark studies should be interpreted within the context
of our system’s design constraints and objectives. While
our approach achieves lower classification performance than
centralized benchmarks, this trade-off is deliberate and en-
ables critical benefits in privacy preservation, communication
efficiency, and adaptability to unlabeled data in resource-
constrained IoT environments.

VI. CONCLUSION

The integration of autoencoders and supervised learning
models within a federated learning framework offers a promis-
ing solution for IoT-based image classification challenges. This
study highlights the strengths and limitations of autoencoders,
which excel in data reconstruction and feature extraction
but underperform in direct classification tasks compared to
supervised models. This performance gap stems from the
autoencoders’ focus on minimizing reconstruction error rather
than optimizing classification accuracy. Nevertheless, their
ability to operate in data-scarce environments and to reduce
communication overhead makes them highly valuable for IoT
applications where data privacy and resource constraints are
critical concerns.

Additionally, the use of UAVs to aggregate locally trained
models and redistribute them across the network enhances the
federated learning framework by ensuring continuous model
improvement while preserving data privacy. The study em-
phasizes the trade-offs between autoencoders and supervised
models, particularly regarding data efficiency and classification
performance. While supervised models excel in scenarios with
abundant labeled data, autoencoders present a more flexible
and privacy-preserving alternative in contexts where data la-
beling is costly or impractical. Furthermore, the research high-
lights the importance of efficient communication protocols in
bandwidth-constrained IoT environments and underscores the
challenges posed by non-IID data distributions, which remain
a significant obstacle to achieving robust and generalizable
global models.

Future directions aim to refine and extend the application
of federated learning models in IoT environments, ensuring
they effectively leverage the computational capabilities of



distributed devices while preserving data privacy and mini-
mizing communication overhead. By addressing the challenges
identified in this study, future research can contribute to the
development of more robust, efficient, and scalable federated
learning systems that meet the demands of real-world IoT
applications.
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