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Abstract—Unmanned Aerial Vehicles (UAVs) are improving
considerably search and rescue (SAR) operations by providing
unprecedented capabilities in dynamic and hazardous environ-
ments. This study presents an innovative, collaborative multi-UAV
data fusion approach that addresses the critical challenge of lo-
cating multiple moving targets within strict time constraints. This
approach improves traditional search techniques by incorporat-
ing intelligent information sharing, fusion, and coordinated path
planning. The core innovation of the algorithm lies in its ability
to dynamically and collaboratively predict the geographical zones
with the highest probability of needed rescue operations. This en-
ables the group of UAVs to coordinate and optimize their search
strategies in real-time. This research offers valuable insights
into multi-UAV collaboration through high-fidelity simulations
involving more than 600 different scenarios with UAV swarms
and moving ground targets. The experimental results indicate
that their effectiveness significantly improves as the number of
UAVs increases, following a quadratic trend until it reaches a
plateau. In particular, the accuracy rate remains above 90%,
regardless of the number of UAVs after reaching the plateau.
This suggests that while a higher density of UAVs enhances
search efficiency, larger UAV swarms yield diminishing returns.
Notably, the approach shows superior efficiency in environments
with clustered targets, which makes it particularly suitable for
disaster response scenarios that involve more concentrated target
locations.

Index Terms—Autonomous Agents, Search and Rescue (SAR),
Unmanned Aerial Vehicles (UAV), UAV Swarm, Path Planning

I. INTRODUCTION

The rapid advancement and increasing popularity of Un-
manned Aerial Vehicles (UAVs) have led to a substantial
increase in their deployment across various applications. This
expansion is largely driven by their flexibility, mobility, and
accessibility. UAVs are now used in a wide range of fields [1],
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[2], including smart agriculture [3], surveillance [4], wildfire
management [5], disaster management [6], and search and
rescue (SAR) [7], [8].

In the context of SAR operations, the prompt retrieval of
survivors is paramount, particularly in the aftermath of a
disaster [9]. The challenge of locating static or mobile targets
in the shortest possible time is further compounded by the
necessity of searching a vast area that may contain potential
obstacles, thereby increasing the complexity of the challenge.

UAVs have proven highly effective in SAR operations,
yielding positive results. UAVs enable the autonomous com-
pletion of tasks that were once challenging or impossible for
humans to accomplish [10]. UAVs offer several advantages
over other technologies and solutions, including ease of de-
ployment, low maintenance costs, time efficiency, the ability
to perform multiple tasks simultaneously, fault tolerance, high
mobility, and the capability to hover in areas where deploying
human rescue teams would be dangerous or restricted. This
capability is especially important for situations that require
quick decision-making [7], [11].

A collaborative multi-UAV system enables the comprehen-
sive search of large areas, facilitating efficient target detection
and information sharing [8]. This information includes details
such as target locations, status, areas of interest, and previ-
ously covered areas, which collectively enhance the efficiency
and precision of the search mission. This study proposes a
novel SAR approach that utilizes information fusion in multi-
UAV collaborative searches for multiple dynamic targets in
uncertain and expansive scenarios with time constraints.

Using peer-to-peer communication among a dynamic swarm
of UAVs, information about identified targets is exchanged,
including the time and location of their detection. This data



is fused at the decision level to replan the UAV group’s
routes based on areas of interest identified through a Gaus-
sian distribution probability model. Alongside the information
exchange among UAVs, details about the identified targets are
sent to a ground station responsible for initiating monitoring
and support/search efforts related to those targets. However,
these actions are beyond the scope of this article.

The main contribution of this paper can be summarized as
follows

• We propose a multi-sensor fusion and multi-UAV ap-
proach for the search of multiple unknown targets in
dynamic environments;

• We propose and implement an algorithm for collabo-
ratively planning and adapting UAV paths to navigate
routes that maximize the probability of locating targets,
considering predictable target movements.

The remainder of this paper is organized as follows: Section
II presents a review of contemporary techniques and systems.
Section III discusses the system model and its constraints. We
detail our collaborative multi-UAV search approach in Section
IV. Section V explains the experimental setup, while Section
VI discusses the results obtained from these experiments.
Finally, Section VII summarizes the key conclusions and
outlines potential directions for future research.

II. RELATED WORK

Utilizing UAVs has proven to be an effective solution for
addressing challenges associated with search and information
gathering in environments characterized by limited accessibil-
ity or expansive search areas [2], [12]. The primary challenges
and solutions pertain to risk scenarios, including SAR, disaster
management, wildfire management, and target positioning [5],
[6], [13]. These scenarios present similar challenges, including
the necessity of conducting a comprehensive search of an ex-
pansive area, navigating a dynamic environment, and devising
a path planning strategy that accounts for the environmental
constraints and the targets’ location as soon as possible.

Various solutions address different aspects of UAV-based
SAR, considering objectives like convergence speed, area
coverage, and target detection [14]. Research has focused on
locating both fixed [8], [15]–[18] and mobile targets [19]–[21].

For static targets in unknown environments, Wu et al.
[17] propose a Q-Learning algorithm that optimizes UAV
trajectories in two phases: a rapid search phase and an optimal
path-planning phase. This approach, which penalizes obstacles
as negative rewards, improves convergence speed and path
efficiency over DDPG [22] and IDWA [23]. Kyriakakis et
al. [15] introduce the Cumulative Unmanned Aerial Vehicle
Routing Problem (CUAVRP), which uses grid-based decompo-
sition and Parallel GRASP-VND algorithms to optimize area
coverage for static targets, maximizing detection success.

Yanmaz et al. [8] propose three multi-UAV path-planning
algorithms—DPPP, EDDPP, and DAPP—focused on detecting
and monitoring static targets while maintaining connectivity.
Less adaptive approaches (DPPP and EDPPP) perform best in
target coverage and convergence speed.

For dynamic targets, Alanezi et al. [19] use a motion-
encoded genetic algorithm (MEGA-MP) to identify high-
probability search areas. Wu et al. [20] apply a swarm-based
imitative learning optimization (SBILO) algorithm, integrating
BSO and TLBO, with two phases: waypoint determination and
target locking by a follower drone.

III. SYSTEM MODEL AND CONSTRAINTS

This work introduces the MUDE approach, which stands for
Multiple UAVs in a Dynamic search Environment, aimed at
identifying mobile targets with predictable movement on the
ground through the use of a collaborative UAV swarm. MUDE
is designed to analyze a specified area, incorporating four
main components described in Figure 1. These components
include: (i) ground station, which transmits configuration
information to the UAVs, receives and stores data collected
by the UAVs and functions as the launch site for the UAVs;
(ii) n search UAVs (ui), which collect sensor data while flying
above, making decisions in (iii) groups (gl) composed by
UAVs within communication; and searching for a previously
unknown (iv) k target objects (oj) that are searched in the
mission.

A mission is initiated with the following parameters:
• A: geographic search area;
• T : maximum mission duration time;
• U = {u1, .., ui, ..., un}: set of UAVs with size n;
• rc: radius of the inter-UAV RF communication range;
• Wi: set of waypoints for each ui ∈ U (eq. 1), defining

an initial route for each ui;
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• h: expected UAV flight altitude for each waypoint.
The mission search area (A) is defined by four geolocation

positions, represented as Ai(latitude, longitude), the vertices
of a square area. If area A is not a square, the division
into sub-areas and the UAV routes can be easily adjusted.
However, for testing and explanation, we assume A to be
square in this article. The area A is defined as a grid of
identical, non-overlapping cells of area Sground (see equation
2). Sground denotes the area the UAV’s detection sensor
covers, as illustrated in Figure 2. We assume that the sensor is
located at the center of the UAV and that the covered area is
centrosymmetric to the drone projection on the ground [24],
[25], resulting in a square area. The extent of the sensor
coverage area varies following the designated flight altitude
of the UAV, as specified in the mission parameters. For the
purposes of this study, we assume that all UAVs in the mission
operate at the same altitude, referred to as h.

Sground = 4h2(σ2 − 1) (2)

Each ui receives a predefined route generated for the
specific mission parameters (A and n) and the coverage path
planning method selected for the mission. The generated route
is defined by a group of waypoints Wi for each ui, with the
initial and final waypoint set to the location of the ground



Figure 1. MUDE approach overview.

Figure 2. UAV sensor coverage of the ground area.

station. During the mission, Wi is updated in each re-planned
individual and social path, and some future waypoints are
inserted, removed, or replaced, except for the last one, which
defines the final destination of the UAV.

During the mission, each UAV ui maintains a continuously
updated probability distribution grid, referred to as Mi. This
grid is used to locate or receive target information from other
UAVs. The grid Mi covers the search area and comprises
a mesh of points (x, y) where the probability distribution is
assessed. The dimensions of Mi are determined by dividing
the total search area A by the size of the sensor’s search
area Sground, resulting in a two-dimensional grid made up
of A

Sground
cells. Each cell’s probability of finding a target at

that location is modeled using a Gaussian distribution in a
discretized and finite 2D space. This distribution is centered
on the positions of each detected target and follows the
multivariate normal distribution defined by the equation:

f(x, y) =
1

2π|Σ|1/2
exp

(
−1

2

[
x− µx

y − µy

]T
Σ−1

[
x− µx

y − µy

])
(3)

where:
• (x, y) is a point in the search space;
• µx, µy are the means of the distribution (target position);
•
∑

is the covariance matrix, which is diagonal with
variance σ2 = spread2, and spread refers to the standard
deviation of the Gaussian distribution defined as rc/4.

In addition to the grid Mi, other parameters (listed below)
related to convergence speed and the number of successful
target detections are also evaluated after the mission has ended.

This assessment helps to determine whether the mission was
successful or not.

• k′: number of successful targets found.
• TPi: list of target objects identified by ui(eq. 4). It

starts empty and records the target identification (oj), its
geographical position (eq. 5), and the timestamp of its
last detection.

TPi = [(o1, P1, t1), ..., (oj , Pj , tj), ..., (ok, Pk, tk)] (4)

Pj = (laoj , looj ) (5)

• tc = tjlast−object−found
: convergence speed;

• C: concentration target rate defined by eq. 6, where l
denotes the length of the side of the search area A,
while k represents the number of targets that have been
grouped into g clusters. Within these clusters, targets can
be separated by a distance up to dcluster.

C =
g

dcluster ∗ l2

(
1− g − 1

k − 1

)
(6)

IV. PROPOSED APPROACH

The general goal of the MUDE approach is to provide an
efficient and reliable method for detecting, identifying, and
collecting information from mobile targets within a designated
area using UAVs that communicate with one another. As
illustrated in the pseudocode described in algorithm 1, the
MUDE mission is initiated based on the parameters outlined
in Section III. These parameters define various aspects of the
mission, including the set of UAVs to be utilized (U ), the
designated search area (A), and the maximum duration of the
mission (T ). Each ui starts the mission with a specific initial
path, represented as a sequence of waypoints (Wi), which
navigates through a specified region of the search area, as
directed by the ground station. The ground station generates
Wi based on a Coverage Path Planning (CPP) scan method,
the coverage area (A), and the number of UAVs (n) used
in the mission. Wi is used to ensure the maximum area
coverage of A. The CPP method may partition A into simple
flight patterns, rectangular areas with no decomposition, or
n grids of equal size. We employed eight CPP scanning
methods for this research analysis to generate initial paths:
(i) back-and-forth parallel, (ii) back-and-forth creeping line,



(iii) LMAT (Linearly Modified Approach to Trajectories), (iv)
sector search, (v) random, (vi) a combination of CPP scanning
methods by dividing area A into n grids, with one UAV
assigned to each grid to execute the CPP scan method, (vii)
LMAT without grid constraints, and (viii) random sampling in
area A without grid constraints.

The mission workflow is divided into five main stages: (i)
search for targets, (ii) broadcast information about the new
target found, (iii) replan social and individual path, (iv) check
mission finish status, and (v)finish mission. Those stages will
be explained in the following subsections (IV-A to IV-E).

Figure 1(a) illustrates the initial mission setup, featuring the
predefined paths, represented by points labeled (ui, wij ). In
this notation, i denotes the number assigned to the search UAV,
and j represents the waypoint number. For example, (u1, w14 )
indicates the fourth waypoint of the UAV u1. When UAVs
ui and uj are within the communication range - i.e., when
distance((ui, wik), (uj , wjk)) ≤ rc - they form a group (gm)
that exchanges information about the targets discovered and
collaboratively decides on a social path through consensus.

All UAVs adhere to their initial paths until they detect a
target. When a UAV ui detects a target ok, it verifies whether
ok has already been identified. If the target is detected for the
first time, ui adjusts its path to approach the area where it
was located and transmits its coordinates to all other UAVs
uk in the same group. This is represented in Figure 1.(a),
when u4 detects o1 and sends its location to u3, which is
in the same group as u4. Identifying a new target triggers a
procedure to establish both the social path and the individual
paths of the other UAVs. This process considers regions with
the highest likelihood of finding additional targets, as defined
by each UAV. The information is then fused to determine the
best search areas while eliminating overlapping waypoints.
Overlapping waypoints are defined as points with the exact
coordinates (latitude and longitude) or those within the ground
sensing coverage area of the UAV’s detection sensor (Sground).

Figure 1(b) illustrates the modified paths of the UAVs during
the mission, depicted by dotted lines. It also highlights the
consensus points used to determine the social path. In this
figure, the group consisting of UAVs u1, u2, and u3, shows that
u1 finds target o4, while u3 locates target o4. After reaching
a consensus, u1, u2, and u3 all adjust their paths, as indicated
by the dotted lines.

A. Search for targets

Upon the mission initiation, ui moves toward its next
waypoint with a constant velocity, designated as v. During
its flight, ui continuously scans its sensor coverage area
for potential targets. Once a target is identified, ui stores
pertinent information about the target identification (oj), which
includes the target’s geocoordinates (Pj) and the timestamp of
discovery tj . This information is saved as a tuple: (oj , Pj(laoj

,
looj ), tj) in the found target list TPi of ui. The details about
the identified target are also broadcast to other UAVs within
the communication range (see section IV-B). If no target is

Algorithm 1 Mission Execution
Require: (A, T, ts, h, n, U, rc, scan type)
1: for ∀ui ∈ U do
2: Wi ← generateWaypoints(i, n,A, scan type)
3: tti ← 0
4: TP ← ∅
5: Start ui mission with T , hi

6: while mission is active do
7: Execute Search Targets ▷ (Sec. IV-A)
8: if target ok is found then
9: if ok ∈ TP then

10: Update ok position in TP
11: else
12: // Change Individual Path (Sec. IV-C)
13: tk , tlast−object−found ← present time
14: TP ← TP ∪ {(ok, Pk, tk)}
15: Mi ← updateProbabilityMap()
16: wh ← getPositionHighProbability(Mi)
17: (ui, wij )← midpoint(Pj , wh)
18: Insert (ui, wij ) in Wi[next position]
19: Start TIMEOUTChangeRoute

20: Travel to waypoint (ui, wij )
21: // Broadcast information
22: Create message mf

23: mf .type← START CONSENSUS
24: mf .target← (ok, Pk, tk)
25: round← round+ 1
26: mf .round← round
27: mf .proposer ← ui.id
28: Send a broadcast message mf ▷ (Sec. IV-B)
29: Execute Social Path Consensus ▷ (Sec. IV-C)
30: Start TIMEOUTSC

31: end if
32: else
33: if current time = T then ▷ (Sec. IV-D)
34: tic ← tilast−object−found

35: Travel to ground station position
36: Terminate mission ▷ (Sec. IV-E)
37: end if
38: end if
39: if current time = TIMEOUTChangeRoute then
40: Stop TIMEOUTChangeRoute

41: Travel to waypoint Wi[next position]
42: end if
43: end while
44: end for

found, the UAV checks whether the mission is completed (see
section IV-D) or continues to the next waypoint.

When ui enters the communication range of another UAV
uj during its flight, the two UAVs exchange their lists of
identified targets, TPi and TPj , respectively. This commu-
nication exchange executes an early-level fusion in ui and uj ,
resulting in a single merged list for both UAVs (TP ′

1 = TP ′
j =

TPi∪TPj) while excluding duplicate targets. Both UAVs then
update their probability maps, Mi and Mj , incorporating the
information about the targets fused during the communication.

However, if uj is not a member of the group gm to
which ui belongs, it also initiates the reorganization of gm.
Reorganization is carried out by sending a PING broadcast
message from both ui and uj , which allows each UAV to
identify other UAVs within the communication range of either
of them. UAVs within the communication range of uj that
belong to a previous group gn are merged into the group gm,
forming a unified group gm. The updated list of UAVs in this
merged group is then distributed to all group members, with a



fusion of information about the target finds and their location,
collaborating to create more realistic probability maps. This
information and the dynamic reorganization of UAV groups
enable better coordination and more effective target identifi-
cation, considering the time constraints characteristic of SAR
missions.

B. Broadcast information

Once the TP of any ui ∈ gm has been modified, the updated
TPi is transmitted via broadcast to all other uj ∈ gm, even if
uj is not within the communication range of ui. This exchange
of information among UAVs that are out of communication
range is achieved by repeating the information to the initially
received UAVs.

The information related to the newly established waypoint
and the identified sensor geolocation is also broadcast to
the other UAVs in the group, thereby initiating a consensus
decision regarding the group’s social path (Algorithm 1, lines
22-31). To this end, the UAVs implement the Fast Paxos
Consensus Algorithm [26], wherein the ui assumes the roles
of proposer and leader at the outset of the consensus round.
The acceptors, represented by the other uj ∈ gm, receive the
om geolocation. If ui.round ≥ uj .round, then uj updates its
probability distribution grid Mj , calculates the position Pjh in
Mj with the greater probability of finding a target, and sends
Pjh back to ui in response to the consensus request.

After ui receives all necessary acknowledgment (ACK)
messages from acceptors (uj ∈ gm), as defined by the
Paxos consensus algorithm, containing their Pjh , it performs
a feature-level fusion with all the received Pjh values. This
process allows it to calculate a new high probability region
of interest defined by the geolocation position P ′

ih
. After

determining P ′
ih

, it is sent to the group, updating their Mj

and communicating their three to five subsequent planned
waypoints.

After receiving the set of waypoints, ui merges all the
potential following waypoints from all uj . This fused informa-
tion is used by ui to determine the potential future common
location of all uj . The combined data and the high-probability
areas containing targets enable ui to execute its individual path
replan (as detailed in section IV-C) and identify coordination
that the other UAVs should avoid. Subsequently, ui transmits
a decision comprising a list of common waypoints to uj ,
thereby preventing them from proceeding to the same area
when replanning their individual paths.

C. UAV Route Change Algorithm

This work examines targets with a predefined tendency to
move in unison while seeking proximity. This type of behavior
is observed in various scenarios, including the movements of
social animals and the tendency of groups of people to gather
in risky situations [27]. Given this movement pattern, UAVs
can concentrate on identifying regions where groups of targets
are located instead of performing a comprehensive scan of the
entire area. When a UAV detects a target or a group of targets
that have not yet been identified, the subsequent waypoint of

the original path is stored, and a new waypoint is calculated
toward a nearby location where other mobile sensors may be
present (Algorithm 1, lines 12-21).

To determine the next waypoint of its path, ui updates Mi,
considering the newfound target(s) location(s) and applying
a discretized Gaussian distribution defined in Eq. 3. With
the location Pk of the last target found ok and the highest
probability coordination to find new targets Pih , ui calculates
mead point of (Pk, Pih ) and inserts it into its Wi as the next
waypoint to be reached, changing its route and initiating a
timer, designated as TIMEOUTroute change. ui continues in
the new direction until the timer TIMEOUTroute change is
fired. In the meantime, if a new target is identified during
the TIMEOUTroute change time interval, the calculation of
the new waypoint is repeated, following the stages outlined
in IV-A, IV-B, and IV-C. If no new target is identified, the
UAV reverts to its original route, resuming its flight path from
where it was last altered.

The presence of targets near waypoint (u4, w42), as
illustrated in Figure 1(a), triggers a route change for
u4. Initially, the UAV begins its tracking mission by
following a predetermined path consisting of waypoints
(u4, w41), (u4, w42), (u4, w43), . . . , (u4, w4k), . . .. Upon
reaching the waypoint (u4, w42), a target group is
identified, prompting u4 to change its route. The timer
TIMEOUTroute change starts, and the mean geographic
coordinates are calculated, resulting in a new waypoint
(u4, w43) that replaces the previous one as the next stop
on the new route. u4 continues to calculate new coordinate
waypoints until TIMEOUTroute change expires and no
additional targets are identified. At this point, at (u4, w4k−1),
u4 resumes its original path to the next waypoint of the initial
route that has not yet been reached, (u4, w4k), and follows it
until it reaches the endpoint or detects another target, which
would trigger another route change. As the route change for
u4 is broadcast to the other UAVs in the group, u3’s route is
also modified, as depicted in Figure 1(b).

D. Check mission finish status

After each search stage (see section IV-A) at step tj , if a
target has not been identified, the criteria for terminating the
mission are evaluated. Each UAV checks whether tj is equal
to T or if it has reached waypoint (ui, wilast−1

) (Algorithm 1,
lines 34-43). The UAV will initiate the mission’s conclusion
if either of these conditions is met.

E. Finish mission

In the completion phase, if the UAV has not reached the final
waypoint defined in the initial set of waypoints, which may
also be the same as the starting point, it will update its route
by designating the final waypoint as the next waypoint and
proceed directly to it. While en route, the UAV may identify
additional targets, but will not alter its path again.

Once the UAV reaches its designated endpoint, it will
transmit all stored logs to a ground station. These logs include
a comprehensive record of all traveled paths, communication



data, and identified targets. By analyzing the collected infor-
mation from all UAVs in the mission, we can consolidate
details related to mission completion and success rates. This
analysis identifies the number of targets found (k′) and checks
whether k′ = k. If k′ = k, the mission is considered successful
and achieves an accuracy rate of 100%. Once all targets are
identified, we also determine the convergence speed (tc) and
the travel time (tti ) of each UAV (ui). If k′ ≤ k, the mission
is deemed unsuccessful, and the accuracy rate is calculated as
α = k′/k.

V. EXPERIMENTS ARCHITECTURE

The proposed approach was implemented and simulated
using GrADyS-SIM NextGen [28], a Python framework de-
signed explicitly for simulating distributed algorithms in a
network environment comprised of communicating and mobile
nodes. GrADyS-SIM NextGen enhances the original GrADyS-
SIM framework [29], [30] by allowing users to simulate the
same code in both integrated modes, utilizing OMNeT++ [31]
for more realistic simulations of network interactions. This
framework was employed to model and observe UAV swarms’
movement and message exchanges, thereby validating commu-
nication and cooperation among UAVs, ground stations, and
mobile targets.

Based on the system model parameters presented in Section
III, 648 scenarios were modeled to analyze the algorithm’s
effectiveness across various parameter configurations. Each
scenario consisted of two parts: (i) the environment and (ii)
the mission. The environments were modeled as square search
areas (A) containing k targets organized into c clusters. The
mission, as described in Section III, was defined by its initial
parameters, including the area (A), maximum mission duration
(T ), a set of UAVs (U ) with size n, the UAV transmission
range (rc), a set of initial waypoints (Wi), and the UAV flight
altitude (h), that defines the ground search area (see eq.2) of
each UAV.

The search area A was a series of varying-sized discrete
square polygons. An exhaustive set of different scenarios was
designed to investigate how UAV density and target clustering
affect the efficiency and speed of the MUDE search algorithm
by exploring all possible configurations of environments and
missions. Considering potential emergencies where individ-
uals might gather in groups to improve their chances of
survival, the experimental environment parameters were set
as A = {16, 36, 64} hectares, with k = {2, 8, 16, 50, 100}
targets grouped into c = {1, 5, 10} clusters. Each group had
a designated leader responsible for determining the group’s
trajectory. The target configurations included scenarios with
both limited and substantial numbers of targets and scenarios
characterized by low or high target concentration.

In light of the need to search for targets in the shortest
possible time — an essential factor in SAR missions — we
set specific initial mission parameters. These parameters in-
cluded n = {2, 4, 8, 16, 32, 64} UAVs, T = {900, 1200, 1800}
seconds, ts = 1 second, rc = 20 meters, h = 20 meters, and
the initial waypoints Wi were generated based on A, n, and

the chosen CPP scan method. The UAVs operated at 10 m/s,
while the targets moved at up to 5 m/s.

VI. RESULTS

Before conducting an exhaustive simulation of various sce-
narios, we performed a preliminary analysis of eight CPP
approaches by running each possible scenario five times to
identify which methods could effectively generate the initial
waypoints Wi (initial path) for each ui involved in the mis-
sion. The goal of this analysis was to improve the mission’s
outcomes. In this experiment, the LMAT method yielded the
best results, demonstrating a median accuracy rate generally
higher than that of the other CPP scanning methods.

After selecting LMAT as the CPP scan method to generate
the UAV’s initial paths (Wi), a set of 648 scenarios was
created from all possible combinations of the initial parameters
outlined in Section V and executed 15 times. The comprehen-
sive analysis assessed how different scenarios influenced both
the accuracy rate and, ultimately, the success rate of mission
execution. It took into account the number of UAVs involved
in the missions, the number of targets being pursued, and their
distribution across the search area, which was defined by the
concentration rate (C) (see eq. 6). This rate is measured in
terms of targets per hectare.

Figure 3 illustrates the variation in the accuracy rate
(ranging from 0% to 100%) along the y-axis for various
scenarios involving 2, 4, 8, 16, 32, and 64 UAVs. The target
concentration along the x-axis varies from 0.1 targets per
hectare to 5 targets per hectare. Elevated values on the y-
axis indicate a higher number of targets identified during the
mission, achieving mission completion when the accuracy rate
reaches 100%. Conversely, lower concentrations on the x-
axis represent a more dispersed distribution of targets, which
increases the amount of non-interest areas. In contrast, a higher
concentration results in an expansion of areas of interest.

The results shown in Figure 3 reveal that accuracy improves
significantly as the number of UAVs increases. Analyzing the
median point of the box plot, we observe that this growth in
accuracy follows a quadratic pattern. The fitted curve indicates
that accuracy initially increases rapidly with the addition of
UAVs but begins to plateau around n = 16. This suggests that
while a higher UAV density enhances search efficiency, larger
UAV swarms yield marginal gains.

Considering the impact of the concentration rate, it can
be observed that for higher concentration rates (C ≥ 0.26),
the accuracy rate for n ≥ 16 remains relatively constant
at approximately 90%. For n < 16, accuracy appears more
unstable, particularly for n = 2, as this number of UAVs is
insufficient to cover an adequate search area within an average
battery duration of UAVs considered to define T . The data
also suggests that the concentration rate affects the algorithm’s
performance less than the number of UAVs involved in the
mission.

The impact of clustering on the accuracy rate is illustrated
in Figure 4. In this figure, the y-axis represents the accuracy
rate, and the x-axis represents the number of target clusters. A



Figure 3. Accuracy of mission target detection (α) versus concentration rate. (eq. 6)

higher value on the x-axis indicates that targets are distributed
across more clusters, resulting in a higher target dispersion
within the search area. In contrast, a value of one cluster means
that all targets are concentrated in a single search area.

The figure shows a direct proportional relationship between
clustering and density: as the number of clusters increases,
the accuracy rate rises, while the area decreases. However,
as the dispersion increases, the results for n ≥ 16 become
increasingly similar, indicating that improving the clustering
significantly affects the accuracy results of the proposed
approach more than simply increasing the number of UAVs
to n > 16. It also suggests that environments with higher

concentrations (C > 1) exhibit more stability and accuracy
across all UAV densities, suggesting that clustered targets are
easier to detect. The results support the expected outcomes of
the proposal approach, which was designed for applications
where targets tend to move together following a specific
movement pattern.

VII. CONCLUSIONS AND FUTURE WORK

This study defines and implements an approach using multi-
UAV collaboration and information fusion to dynamically
identify areas with the highest probability of containing one
or more mobile targets in unknown areas under time con-

Figure 4. Accuracy of mission target detection (α) versus Number of target clusters per area (A)



straints. The implementation is carried out using the Gradys-
SIM-nextgen simulator. The continuous exchange of spatial
awareness data between the UAVs includes the areas covered
and those yet to be covered by each drone. The exchange
among UAVs within the same group enhances the collective
decision-making process for replanning routes. It ensures
broader coverage to identify the maximum number of targets
within the mission time.

A series of scenarios were created, varying the parameters
of the search area (A), the number of UAVs (n), the number
of targets (k), and the mission duration (T ). The simulations
performed for these scenarios produced the results presented in
Section VI. These results indicate that the algorithm is highly
effective in scenarios where n ≥ 16 and C > 0.25. Specifi-
cally, accuracy reaches a plateau when n = 16, maintaining
an average accuracy rate of 90%. These results suggest that
in environments with a higher target concentration, an optimal
team size of UAVs exists beyond which operational efficiency
stabilizes.

Based on our findings and experiences implementing the
solution, we expect to improve or maintain high detection rates
with fewer drones or reduced tracking time by enhancing the
coordination algorithm and incorporating support for scenarios
where targets exhibit unpredictable movement patterns.
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